
;

+
Transform Legacy Code to
Maintainable Java

CM evolveIT metaTX-AI can refactor your legacy app developed
in native COBOL, or CA 2E (Synon) generating RPG or COBOL,
directly to maintainable runtime-free Java and JS

======> *
_

< >

//

.

W H I T E P A P E R

2 White Paper — Transform Your Legacy Code to Maintainable Java and JS

COBOL is over 60 years old yet still powers 70% of
the world's transactions.

And that number shows no sign of slowing down, with an estimated 1 billion lines of new code being

generated per year. A recent comprehensive survey commissioned by MicroFocus and published in 2022

estimates that 775-800 billion lines of COBOL code is currently in production. The previous estimate,

before the study, was in the range of 200-300 Billion1.

92 percent of respondents of that same survey stated that their organizations’ COBOL applications are

"strategic to their IT strategy," and application portfolio alignment with new technology is among their key

drivers for COBOL modernization.

The problem?

Legacy applications are growing, yet new coders aren't learning legacy languages like COBOL and RPG to

keep these systems humming. The average age of the COBOL programmer is well over 40 and they are

rapidly leaving the profession. Many important functions will soon reach end-of-life.

The solution:

Transform your legacy application into maintainable, runtime free Java and JS, workload by workload,

with state of the art tools like CM evolveIT metaTX that leverages the power of automation and artificial

intelligence.

Contents
3 Making the case for Java
4 Strategies for Success
5 The Power of Automation
6 Automated Refactoring Best Practices
7 CM evolveIT metaTX
8 Powered by Artificial Intelligence

1 OpenText (opentext.com/what-is/cobol

Why Shift from
COBOL to Java?

Java is a modern programming language in wide use,

offering modern capabilities and performance, supported by

a large and growing pool of specialists who can maintain

and transform your critical applications.

With a sustainable, iterative approach to modernizing your

legacy applications, you can achieve digital transformation

and match your IT staffing resources to your application

functionality at a pace that is comfortable, risk-free, and

sane.

3 White Paper - Transform Your Legacy Code to Maintainable Java and JS

Making the Case For Java
Legacy languages have been the go-to, trustworthy system for decades, and remain the backbone of many
organizations that process large amounts of data. But the tide is rapidly shifting in favor of more modern and
versatile languages like Java, and for good reason.

*Cost Savings Case Study: Specialty Processors

Making the move from expensive standard processors to less expensive zIIP processors is just one

example of the cost savings that you can realize when moving workloads from COBOL to Java. In

the case of IBM monthly licence charges (MLC) costs, any workloads moved to the zIIP aren't

counted in the million service units (MSU) metrics that are used to add up your bill, a move that

can save a lot of money.

Vast Labor Pool

Java is versatile, platform-
independent, and boasts a
large, active community of
developers constantly
working to improve and
update the language.

Improves Developer
Productivity

IDEs like Eclipse and IntelliJ
IDEA provide developers
with sophisticated
functionalities to identify and
fix errors faster, write less
code, and automate routine
programming tasks.

Enhances Security

Java is widely recognized for
its strong security features,
which include a robust
permissions system, a
security-conscious runtime
environment, and standard
cryptographic functionalities.

Boosts Efficiency

Java allows for writing reusable
object-oriented code, which
means developers can build
upon existing codebases
instead of starting from scratch
each time.

Streamlines Application
Management

A Java-based system is easier
to integrate with modern
technologies and platforms,
critical for businesses looking
to adopt a microservices
architecture or expand their
suite of applications.

Reduced Cost

Java can be open sourced,
IDE's and compilers are low
cost or free, and specialty
processors can be utilized on
the mainframe to lower
processing fees*.

Builds Resilience

With Java, you're not tied to a
specific hardware or operating
system, allowing you to adapt
your critical applications to
future changes in technology
as needed.

Move your Applications to
the Cloud

Moving to commodity cloud
servers can be less expensive
to operate than on-premesis
midrange or mainframe
hardware, with the right
amount of preparation and
planning.

Your Customers Will Love It

Modern consumers demand
fast, efficient, and reliable
digital experiences –
something that modern
Java/JS can deliver much
more effectively than COBOL
can.

+

+

+

+

+

+

+

+

+

4 White Paper — Transform Your Legacy Code to Maintainable Java and JS

STRATEGIES FOR SUCCESS: ITERATION AND AUTOMATION

Gone are the days of the rip and replace modernization strategy for most companies.
According to the previously quoted 2022 MicroFocus survey, 64 percent of respondents
have plans to modernize their COBOL applications, and 72 percent see modernization as
an "overall business strategy." We find that with most modernization strategies, the two
principles that drive a successful project are Iteration and Automation. We have several

strategies and tools at our disposal to iterate our COBOL to Java projects:

Phased Migration

Migrating your application workload by workload minimizes the risk of disruption to critical

operations by giving you the needed breathing room to validate the migration at each stage.

It also offers a gradual learning curve for developers new to Java, as they can focus on

specific modules rather than dealing with the entire system all at once. This approach provides

flexibility, allowing you to prioritize modules based on their criticality or complexity.

Hybrid Environments

With a hybrid environment, you can leverage the strengths of both programming languages.

Existing COBOL code can continue to run smoothly while new functionalities and

enhancements can be developed in Java. This approach enables you to take advantage of the

robustness and reliability of COBOL while embracing the flexibility and scalability offered by

Java.

Software Testing with Automation and AI

Adopting testing strategies and best practices, powered by automation and AI, at important

phases of your COBOL to Java transformation can significantly impact your development

process. You'll see improved reliability, quicker issue detection, and smoother deployments.

You'll also have a well-oiled machine; everything will run more smoothly, and you can sleep

better at night knowing your application won't fall apart at the slightest disturbance in your

new transformed environment.

5 White Paper — Transform Your Legacy Code to Maintainable Java and JS

THE POWER OF AUTOMATION

When refactoring your codebase, automation is a powerful ally loaded with high-impact benefits,

decreasing costs, time, and risk in one concerted effort. When tuned correctly CM evolveIT meta TX

automation will not only minimize end-user training allowing you to utilize your existing staff, it's highly

automated at scale and maintainable within standard architectures. You'll be able to plug it into your

standard DevOps pipelines and go.

+ After Automation

Your application is refactored into maintainable
runtime-free Java accessible by the web,
maintainable by a much larger labor pool, and
no vendor lock-in is required.

+ Before Automation

Your green-screen application is trusty and
reliable, but lacks the modern features and
flexibility you need to compete in today's
competitive technical marketplace.

6 White Paper — Transform Your Legacy Code to Maintainable Java and JS

Automated Refactoring Best Practices

Integrate Automation into the Development Process

Rather than treating automation as a separate project, integrate it into your software development process.

Continuous monitoring and improvement should be part of this integration. This approach will ensure that

automation remains practical and relevant in the long term.

Consider Scalability from the Beginning

Ensure that your refactoring projects can handle future growth. Scalability should be a critical factor in selecting

an automated refactoring tool. Choose tools that can handle large databases and continue to perform well as

the database grows. Proper database design and performance testing can help prevent scalability issues.

Clearly Define Requirements

In automated software refactoring, distinctly outlining what the system should achieve is crucial. This includes

specifying not only the functional aspects but also non-functional ones like performance metrics, security

standards, and code maintainability. Unclear requirements can lead to mismatches between the end product

and expected outcomes, making it crucial for stakeholders to stay aligned throughout the project lifecycle.

Implement Continuous Integration/Continuous Deployment (CI/CD)

Adopting CI/CD practices ensures that refactoring is a regular part of the development lifecycle. By

continuously integrating and deploying code, teams are forced to address refactoring needs more proactively,

which helps maintain a clean codebase.

Use Metrics to Track Success

Track the success of your refactoring efforts with appropriate metrics. Measuring factors like the frequency of

code integration, the amount of technical debt, and the number of bugs reported can give valuable insights into

the effectiveness of your refactoring efforts.

Customize Refactoring Techniques to Fit Project Needs

Understand that not all refactoring techniques suit every project. Tailor your approach to the project's specific

needs, taking into account factors such as the size of the codebase, the programming languages in use, and the

domain of the application.

Leverage Expertise and Specialized Tools

Engage with experts who have a proven track record in software refactoring and make use of specialized tools

designed for refactoring. These resources can provide the necessary expertise and support to tackle complex

refactoring tasks effectively.

7 White Paper — Transform Your Legacy Code to Maintainable Java and JS

With the help of CM evolveIT metaTX-AI’s automated code refactoring
superpower, you can effectively convert your legacy codebases to runtime-
free Java and JS. Your applications will operate on the cutting edge, and future
developers will be able to get up to speed quickly.

CM evolveIT metaTX-AI provides several features that facilitate
refactoring legacy code to Java and JS

Code Analysis

CM evolveIT Meta TX-AI performs an in-depth analysis of the legacy codebase, identifying potential areas for

improvement. It examines program structure, data usage, and logic flow, enabling developers to identify

opportunities for refactoring.

Code Metrics

The tool generates comprehensive reports on code quality, complexity, and maintainability. These metrics help

developers prioritize refactoring efforts and track the progress of code improvements.

Automated Refactoring

CM evolveIT offers a range of automated refactoring techniques specific to COBOL. From restructuring data

structures to improving naming conventions and eliminating dead code, these refactoring actions are applied

programmatically, saving valuable development time.

Dependency Visualization
The tool visualizes code dependencies, allowing developers to identify and refactor complex interdependencies.

This feature helps to improve code modularity and reduce tight coupling.

8 White Paper — Transform Your Legacy Code to Maintainable Java and JS

NOW WITH CHATGPT INTEGRATION

Generative AI is throwing the software world for a loop with dramatic productivity gains. The promise

is real if used intelligently and with skill. The key: inject AI access where the important work is done

and focus its power within a carefully selected universe of context-aware prompts.

+ Library of Prompts

Pre-defined prompts
further add to the power
by providing the exact
queries needed to get the
job done quickly and
efficiently, focusing the
user on the task at hand.

+ Source Code Power

The CM evolveIT metaTX-AI
source code viewer provides a
direct interface to the vast powers
of AI, giving you all the problem-
solving benefits of generative
artificial intelligence at your
fingertips.

+ AI Output

Artificial Intelligence output explains and analyzes your
existing code, and generates new code as needed.

9 White Paper — Transform Your Legacy Code to Maintainable Java and JS

CM First Group Can Help

Our deep experience with legacy enterprise systems puts us in a unique position to help companies reinvent

their modernization efforts with RPA. We have the knowledge and real-world experience needed to implement

emerging RPA technology effectively and help you target and achieve the highest ROI possible.

For more information, visit cmfirstgroup.com.

Contact us for more information or to schedule a demo. Call 888-866-6179 or email us: info@cmfirstgroup.com.

© CM First Group. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

CM First Group
888-866-6179
cmfirstgroup.com

7000 North Mopac Expressway
Plaza 7000, 2nd Floor
Austin, Texas 78731

About CM First Offerings

CM First’s powerful automation tools, augmented by professional services staff with many

decades of software engineering and DevOps experience, ensure successful outcomes for even

the most demanding modernization projects. Our products and expertise have helped over 400

customers in the public and private sectors reach their desired future state faster and more cost

effectively than by using conventional approaches.

CM First software quickly analyzes, documents and re-platforms legacy code bases with minimal

errors and rework, including those that are too large and complex for humans to tackle in any

reasonable timeframe. The output is immediately usable by all team members, regardless of

experience and knowledge of legacy software languages, accelerating application maintenance

and modernization projects.

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	CM evolveIT Data Lineage
	Blank Page

